11 resultados para Striatum

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans and animals have remarkable capabilities in keeping time and using time as a guide to orient their learning and decision making. Psychophysical models of timing and time perception have been proposed for decades and have received behavioral, anatomical and pharmacological data support. However, despite numerous studies that aimed at delineating the neural underpinnings of interval timing, a complete picture of the neurobiological network of timing in the seconds-to-minutes range remains elusive. Based on classical interval timing protocols and proposing a Timing, Immersive Memory and Emotional Regulation (TIMER) test battery, the author investigates the contributions of the dorsal and ventral hippocampus as well as the dorsolateral and the dorsomedial striatum to interval timing by comparing timing performances in mice after they received cytotoxic lesions in the corresponding brain regions. On the other hand, a timing-based theoretical framework for the emergence of conscious experience that is closely related to the function of the claustrum is proposed so as to serve both biological guidance and the research and evolution of “strong” artificial intelligence. Finally, a new “Double Saturation Model of Interval Timing” that integrates the direct- and indirect- pathways of striatum is proposed to explain the set of empirical findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The superior colliculus (SC) has been shown to play a crucial role in the initiation and coordination of eye- and head-movements. The knowledge about the function of this structure is mainly based on single-unit recordings in animals with relatively few neuroimaging studies investigating eye-movement related brain activity in humans. METHODOLOGY/PRINCIPAL FINDINGS: The present study employed high-field (7 Tesla) functional magnetic resonance imaging (fMRI) to investigate SC responses during endogenously cued saccades in humans. In response to centrally presented instructional cues, subjects either performed saccades away from (centrifugal) or towards (centripetal) the center of straight gaze or maintained fixation at the center position. Compared to central fixation, the execution of saccades elicited hemodynamic activity within a network of cortical and subcortical areas that included the SC, lateral geniculate nucleus (LGN), occipital cortex, striatum, and the pulvinar. CONCLUSIONS/SIGNIFICANCE: Activity in the SC was enhanced contralateral to the direction of the saccade (i.e., greater activity in the right as compared to left SC during leftward saccades and vice versa) during both centrifugal and centripetal saccades, thereby demonstrating that the contralateral predominance for saccade execution that has been shown to exist in animals is also present in the human SC. In addition, centrifugal saccades elicited greater activity in the SC than did centripetal saccades, while also being accompanied by an enhanced deactivation within the prefrontal default-mode network. This pattern of brain activity might reflect the reduced processing effort required to move the eyes toward as compared to away from the center of straight gaze, a position that might serve as a spatial baseline in which the retinotopic and craniotopic reference frames are aligned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dopamine (3-hydroxytyramine) is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT), can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1). Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reinforcing and psychomotor effects of morphine involve opiate stimulation of the dopaminergic system via activation of mu-opioid receptors (muOR). Both mu-opioid and dopamine receptors are members of the G-protein-coupled receptor (GPCR) family of proteins. GPCRs are known to undergo desensitization involving phosphorylation of the receptor and the subsequent binding of beta(arrestins), which prevents further receptor-G-protein coupling. Mice lacking beta(arrestin)-2 (beta(arr2)) display enhanced sensitivity to morphine in tests of pain perception attributable to impaired desensitization of muOR. However, whether abrogating muOR desensitization affects the reinforcing and psychomotor properties of morphine has remained unexplored. In the present study, we examined this question by assessing the effects of morphine and cocaine on locomotor activity, behavioral sensitization, conditioned place preference, and striatal dopamine release in beta(arr2) knock-out (beta(arr2)-KO) mice and their wild-type (WT) controls. Cocaine treatment resulted in very similar neurochemical and behavioral responses between the genotypes. However, in the beta(arr2)-KO mice, morphine induced more pronounced increases in striatal extracellular dopamine than in WT mice. Moreover, the rewarding properties of morphine in the conditioned place preference test were greater in the beta(arr2)-KO mice when compared with the WT mice. Thus, beta(arr2) appears to play a more important role in the dopaminergic effects mediated by morphine than those induced by cocaine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans and song-learning birds communicate acoustically using learned vocalizations. The characteristic features of this social communication behavior include vocal control by forebrain motor areas, a direct cortical projection to brainstem vocal motor neurons, and dependence on auditory feedback to develop and maintain learned vocalizations. These features have so far not been found in closely related primate and avian species that do not learn vocalizations. Male mice produce courtship ultrasonic vocalizations with acoustic features similar to songs of song-learning birds. However, it is assumed that mice lack a forebrain system for vocal modification and that their ultrasonic vocalizations are innate. Here we investigated the mouse song system and discovered that it includes a motor cortex region active during singing, that projects directly to brainstem vocal motor neurons and is necessary for keeping song more stereotyped and on pitch. We also discovered that male mice depend on auditory feedback to maintain some ultrasonic song features, and that sub-strains with differences in their songs can match each other's pitch when cross-housed under competitive social conditions. We conclude that male mice have some limited vocal modification abilities with at least some neuroanatomical features thought to be unique to humans and song-learning birds. To explain our findings, we propose a continuum hypothesis of vocal learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dopamine is a key neuromodulatory transmitter in the brain. It acts through dopamine receptors to affect changes in neural activity, gene expression, and behavior. In songbirds, dopamine is released into the striatal song nucleus Area X, and the levels depend on social contexts of undirected and directed singing. This differential release is associated with differential expression of activity-dependent genes, such as egr1 (avian zenk), which in mammalian brain are modulated by dopamine receptors. Here we cloned from zebra finch brain cDNAs of all avian dopamine receptors: the D1 (D1A, D1B, D1D) and D2 (D2, D3, D4) families. Comparative sequence analyses of predicted proteins revealed expected phylogenetic relationships, in which the D1 family exists as single exon and the D2 family exists as spliced exon genes. In both zebra finch and chicken, the D1A, D1B, and D2 receptors were highly expressed in the striatum, the D1D and D3 throughout the pallium and within the mesopallium, respectively, and the D4 mainly in the cerebellum. Furthermore, within the zebra finch, all receptors, except for D4, showed differential expression in song nuclei relative to the surrounding regions and developmentally regulated expression that decreased for most receptors during the sensory acquisition and sensorimotor phases of song learning. Within Area X, half of the cells expressed both D1A and D2 receptors, and a higher proportion of the D1A-only-containing neurons expressed egr1 during undirected but not during directed singing. Our findings are consistent with hypotheses that dopamine receptors may be involved in song development and social context-dependent behaviors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rivalry between the men's basketball teams of Duke University and the University of North Carolina-Chapel Hill (UNC) is one of the most storied traditions in college sports. A subculture of students at each university form social bonds with fellow fans, develop expertise in college basketball rules, team statistics, and individual players, and self-identify as a member of a fan group. The present study capitalized on the high personal investment of these fans and the strong affective tenor of a Duke-UNC basketball game to examine the neural correlates of emotional memory retrieval for a complex sporting event. Male fans watched a competitive, archived game in a social setting. During a subsequent functional magnetic resonance imaging session, participants viewed video clips depicting individual plays of the game that ended with the ball being released toward the basket. For each play, participants recalled whether or not the shot went into the basket. Hemodynamic signal changes time locked to correct memory decisions were analyzed as a function of emotional intensity and valence, according to the fan's perspective. Results showed intensity-modulated retrieval activity in midline cortical structures, sensorimotor cortex, the striatum, and the medial temporal lobe, including the amygdala. Positively valent memories specifically recruited processing in dorsal frontoparietal regions, and additional activity in the insula and medial temporal lobe for positively valent shots recalled with high confidence. This novel paradigm reveals how brain regions implicated in emotion, memory retrieval, visuomotor imagery, and social cognition contribute to the recollection of specific plays in the mind of a sports fan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main impetus for a mini-symposium on corticothalamic interrelationships was the recent number of studies highlighting the role of the thalamus in aspects of cognition beyond sensory processing. The thalamus contributes to a range of basic cognitive behaviors that include learning and memory, inhibitory control, decision-making, and the control of visual orienting responses. Its functions are deeply intertwined with those of the better studied cortex, although the principles governing its coordination with the cortex remain opaque, particularly in higher-level aspects of cognition. How should the thalamus be viewed in the context of the rest of the brain? Although its role extends well beyond relaying of sensory information from the periphery, the main function of many of its subdivisions does appear to be that of a relay station, transmitting neural signals primarily to the cerebral cortex from a number of brain areas. In cognition, its main contribution may thus be to coordinate signals between diverse regions of the telencephalon, including the neocortex, hippocampus, amygdala, and striatum. This central coordination is further subject to considerable extrinsic control, for example, inhibition from the basal ganglia, zona incerta, and pretectal regions, and chemical modulation from ascending neurotransmitter systems. What follows is a brief review on the role of the thalamus in aspects of cognition and behavior, focusing on a summary of the topics covered in a mini-symposium held at the Society for Neuroscience meeting, 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early life stress (ELS) is strongly associated with negative outcomes in adulthood, including reduced motivation and increased negative mood. The mechanisms mediating these relations, however, are poorly understood. We examined the relation between exposure to ELS and reward-related brain activity, which is known to predict motivation and mood, at age 26, in a sample followed since kindergarten with annual assessments. Using functional neuroimaging, we assayed individual differences in the activity of the ventral striatum (VS) during the processing of monetary rewards associated with a simple card-guessing task, in a sample of 72 male participants. We examined associations between a cumulative measure of ELS exposure and VS activity in adulthood. We found that greater levels of cumulative stress during childhood and adolescence predicted lower reward-related VS activity in adulthood. Extending this general developmental pattern, we found that exposure to stress early in development (between kindergarten and grade 3) was significantly associated with variability in adult VS activity. Our results provide an important demonstration that cumulative life stress, especially during this childhood period, is associated with blunted reward-related VS activity in adulthood. These differences suggest neurobiological pathways through which a history of ELS may contribute to reduced motivation and increased negative mood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sexual risk behavior among young adults is a serious public health concern; 50% will contract a sexually transmitted infection (STI) before the age of 25. The current study collected self-report personality and sexual history data, as well as neuroimaging, experimental behavioral (e.g., real-time hypothetical sexual decision making data), and self-report sexual arousal data from 120 heterosexual young adults ages 18-26. In addition, longitudinal changes in self-reported sexual behavior were collected from a subset (n = 70) of the participants. The primary aims of the study were (1) to predict differences in self-report sexual behavior and hypothetical sexual decision-making (in response to sexually explicit audio-visual cues) as a function of ventral striatum (VS) and amygdala activity, (2) test whether the association between sexual behavior/decision-making and brain function is moderated by gender, self-reported sexual arousal, and/or trait-level personality factors (i.e., self-control, impulsivity, and sensation seeking) and (3) to examine how the main effects of neural function and interaction effects predict sexual risk behavior over time. Our hypotheses were mostly supported across the sexual behavior and decision-making outcome variables, such that neural risk phenotypes (heightened reward-related ventral striatum activity coupled with decreased threat-related amygdala activity) were associated with greater lifetime sexual partners at baseline measured and over time (longitudinal analyses). Impulsivity moderated the relationship between neural function and self-reported number of sexual partners at baseline and follow up measures, as well as experimental condom use decision-making. Sexual arousal and sensation seeking moderated the relationship between neural function and baseline and follow up self-reports of number of sexual partners. Finally, unique gender differences were observed in the relationship between threat and reward-related neural reactivity and self-reported sexual risk behavior. The results of this study provide initial evidence for the potential role for neurobiological approaches to understanding sexual decision-making and risk behavior. With continued research, establishing biomarkers for sexual risk behavior could help inform the development of novel and more effective individually tailored sexual health prevention and intervention efforts.